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Abstract

Large language models are widely used to

perform natural language tasks like summa-

rization, translation, and generation. While

they achieve remarkable performance, they are

black boxes, and many questions remain as to

how human-like their language processing is.

One major question is whether they rely on

syntactic structures like those argued to under-

lie human language. In this study, we inves-

tigate whether language models use an inter-

nal representation of grammatical subjecthood

and objecthood in performing complex down-

stream tasks. By iteratively training classifiers

to predict subjects and objects from embed-

dings, we aim to identify and systematically

destroy a model’s ability to classify grammat-

ical subjecthood and objecthood, resulting in

an ablated model. If an ablated model can still

do complex tasks, then we know that these

representations were not used. If it cannot,

then this is evidence that these grammatical

categories are used downstream in these tasks.

By evaluating a RoBERTa model fine-tuned

on the Multi-Genre Natural Language Infer-

ence (MNLI) corpus before and after this pro-

cedure, we find that accuracy drops on tasks

requiring subject and object information. Our

findings demonstrate how language models

develop an internal representation of grammar

through self-supervised learning that they ac-

tively use in complex natural language tasks.

1 Introduction and Prior Work

ChatGPT has taken the Internet by storm. It is the

most recent in a series of large language models

released over the last few years. Large language

models can be thought of as systems designed to

predict the next most probable word in a series.

For example, given the prompt “I’m a student at

the University of”, OpenAI’s GPT-3 (specifically

text-davinci-003) (Brown et al., 2020) found

the following words most probable:

Word Probability

Washington 6.42%

Michigan 5.74%

California 4.59%

Toronto 4.34%

Texas 3.01%

Maryland 2.34%

Table 1: GPT-3’s most probable completions for the

prompt “I’m a student at the University of”.

These models learn natural language by ingest-

ing billions of pages of human-written text from

the Internet. This text is crafted into training data

by hiding text, letting the model guess the next

words, and correcting the model with what the ac-

tual words should have been, a technique known

as self-supervised learning (Liu et al., 2020). Do-

ing this with enough text allows language mod-

els to learn the structure of language with a fairly

high degree of accuracy. Language models are

important today because there are a multitude of

tasks that can be solved with next-word prediction,

from code generation and translation to question

answering and summarization. In addition, by do-

ing this training, they seem to learn more than just

next-word prediction — they learn syntax.

However, there is a debate about whether these

models actually learn syntax. Trained language

models are represented as large neural networks

with parameters known as weights and biases. In-

stead of taking inputs as text directly, language

models use embeddings, which are pieces of lan-

guage encoded into a lower-dimensional vector

space to make it easier to perform computations on

them. Some research shows that linguistic hierar-

chical structure emerges in neural networks as sen-

tence tree structures are able to be reconstructed

from these learned embeddings (Manning et al.,

2020). This is exciting because it illustrates that

these models implicitly embed syntactic structure,



essentially learning grammar on their own. How-

ever, other linguists argue that deep neural net-

works’ understanding of syntax can be explained

using non-grammatical factors (Linzen and Ba-

roni, 2020). These conflicting views demonstrate

how a lack of interpretability in neural networks

makes it difficult to understand how they learn lan-

guage.

One way researchers have tried to understand

how language models learn is by probing their

abilities on tasks like subject-object classification

(Papadimitriou et al., 2021, 2022). In this task,

a binary classifier is trained to predict whether a

layer embedding is a subject or an object. This

task is informative because subjecthood compre-

hension is a fundamental part of language under-

standing. Prior results demonstrate that learned

embeddings of language models are in fact influ-

enced by grammatical features like subjecthood.

This suggests that language models are able to

learn syntax.

With this in mind, we can explore further. If

language models are able to accurately classify

subjects and objects, does that imply that destroy-

ing a language model’s internal representation of

subjecthood would make it worse at classifying

subjects and objects? Furthermore, would a lan-

guage model without a representation of subject-

hood perform worse on downstream evaluation

tasks that implicitly require subjecthood compre-

hension?

In this paper, we explore these questions

through two experiments, comparing the perfor-

mance of a regular language model and a lan-

guage model with its subjecthood representation

removed. In the first experiment, we evaluate the

performance of both models on a general task that

does not specifically focus on subjecthood. In the

second, we evaluate the models on a corpus which

places a stronger emphasis on subjecthood under-

standing. We expect that the language model with-

out a subjecthood representation will perform the

same in the first experiment, and worse on the sec-

ond.

2 Methods

Our experimental procedure can be described in

three steps and is illustrated in Figure 1.

1. Training: Take a regular RoBERTa model

and destroy its knowledge of subjecthood to

create a nulled RoBERTa model.

2. Evaluation: Evaluate the regular and nulled

models on a general language understanding

task.

3. Evaluation: Evaluate the regular and nulled

models on a subjecthood-specific language

understanding task.

We will cover each of these steps in more detail

below.

2.1 Training INLP

In order to destroy a language model’s represen-

tation of subjecthood, we turn to a method known

as Iterative Nullspace Projection (INLP) (Ravfo-

gel et al., 2020). Intuitively, we can think of INLP

as a process that finds where the model stores its

knowledge on subjecthood and objecthood and re-

moves that knowledge until we believe the model

is sufficiently ablated. It is a process that, when

done correctly, can completely destroy a language

model’s understanding of any topic.

Mathematically, INLP neutralizes a language

model’s ability to predict a property, Z, from a set

of representations, H , by iteratively training clas-

sifiers c1, c2, . . . , cn to predict Z, and removing

each classifier’s contribution to the model’s pre-

dictions. Effectively, this method keeps perform-

ing dimensionality reduction within latent space,

each time removing the best classification sub-

space. The actual mechanics of removing a clas-

sifier’s contribution are by using nullspace projec-

tion, where all data points are projected onto the

nullspace of the classifier’s weights, which is the

classification subspace learned in training. This

process is repeated for n classifiers, and the final

representation is the nullspace of the last classi-

fier’s weights.

Measuring a language model’s abilities before

and after INLP is a method known as Amnesic

Probing (Elazar et al., 2021), which dictates that

we can measure the utility of a property by mea-

suring the model’s ability to predict it before and

after INLP. For our experiments, we will train

binary classifiers to distinguish the layer embed-

dings of nouns that are transitive or intransitive

subjects from transitive objects. We will train sep-

arate classifiers for each layer of the model, each

time performing 30 iterations of INLP. Through

the process, we will measure the model’s ability

to predict the subjecthood of nouns before and af-

ter INLP.
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Figure 1: A depiction of the entire experiment. We start with a regular roberta-large-mnli model, perform

INLP on it to remove subjecthood information, and evaluate the regular and nulled models against the MNLI and

HANS datasets. Critically, we use the MNLI dataset to verify that we are not degrading the model’s performance

on non-subjecthood tasks.

The training data for the INLP classifiers comes

from the Universal Dependencies treebank. Layer

embeddings are annotated with information on

whether it represents a transitive subject, intran-

sitive subject, transitive object, or none of the

above. The language model embeddings we

use are roberta-large-mnli, a RoBERTa model

(Liu et al., 2019) with 24 hidden layers fine-tuned

on the Multi-Genre Natural Language Inference

(MNLI) corpus.

2.2 Model Evaluation

For our downstream evaluation tasks, we use the

MNLI corpus (Williams et al., 2018) and the

Heuristic Analysis for NLI Systems (HANS) cor-

pus (McCoy et al., 2019). Natural Language In-

ference (NLI) involves training a language model

to predict whether a premise entails or contradicts

a hypothesis. For example, “A soccer game with

multiple people playing” entails that “People are

playing a sport” and contradicts that “People are

sleeping”. MNLI applies this task to multiple gen-

res and there are about 10,000 examples in the

test evaluation set. HANS is similar as it is de-

signed to evaluate MNLI systems but we are in-

terested in the 2,000 passive sentences from this

dataset as they allow us to directly probe subject-

hood. This dataset contains examples like “The

managers were introduced by the scientists” con-

tradicts “The managers introduced the scientists”.

What we expect from our experiments is to find

that MNLI tasks do not have a significant drop in

accuracy after performing INLP to null out sub-

jecthood, since MNLI does not always depend

on subjecthood. There are, however, cases when

MNLI uses subjecthood information, such as “My

ankle” entails “My body part”. In a case like this

we would expect a drop in performance, though

only a fraction of MNLI tasks depend on subject-

hood information.

On the other hand, we expect worse perfor-

mance on the HANS dataset since the examples

generally depend on subjecthood. Model perfor-

mance on the MNLI and HANS datasets prior to

performing INLP should also be relatively high

since the roberta-large-mnli model is fine-

tuned on an MNLI dataset. All experiments were

run on the UT Computational Linguistics Re-

search Group’s cluster, which consists of 4 Nvidia

A40 GPUs.

3 Results

Through the process of training classifiers for

INLP, we can visualize the model’s ability to clas-

sify subjects and objects before (Figure 2) and af-

ter (Figure 3) performing INLP. Prior to INLP,
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the model is best able to accurately classify sub-

jects and objects in the middle hidden layers. As

the number of classifiers increases to 30, evalua-

tion accuracy decreases for all layers, since we are

gradually removing more and more subjecthood

information.

Figure 2: Heatmap of evaluation accuracy on a subject-

object task while performing INLP. The x-axis is the

number of layers of the model, and the y-axis is the

number of classifiers. We expect that as the number of

classifiers increases, accuracy should decrease because

we are nulling out more information.

After performing INLP, we observe that the

model accuracy is significantly lower and there is

not a clear pattern of accuracy across layers. The

model is unable to accurately classify subjects and

objects even in the middle hidden layers, despite

having the ability to do so prior to INLP. This con-

firms that the INLP method is able to null out sub-

jecthood information in the model.

Figure 3: Heatmap of after-null accuracy on a subject-

object task while performing INLP. The x-axis is the

number of layers of the model, and the y-axis is the

number of classifiers. We see that accuracy drops

across all layers and that there is not a general trend

to this plot, which is what we expected.

Since our primary reason to use the MNLI

dataset was to make sure that the model still re-

tained performance, we expected to not see a sig-

nificant drop in accuracy. Our results show that the

model’s accuracy remains within 2% of the base-

line accuracy for all layers. This confirms that

the model still retains performance on the MNLI

dataset after performing INLP, which we expected

since the dataset does not always depend on sub-

jecthood.

Figure 4: Accuracy on the MNLI dataset with models

before and after having layers nulled out.

On our HANS dataset, we saw quite different

results. On 6 of the hidden layers, the model’s

accuracy dropped by more than 6%, and 3 lay-

ers dropped more than 9%. This implies that the

model’s performance is significantly worse on the

HANS dataset after performing INLP, which we

expected since the dataset does depend on subject-

hood.

Figure 5: Accuracy on the HANS dataset with models

before and after having layers nulled out.

Interestingly, when we look at some of the ex-

amples of errors on the MNLI dataset, we see

that they tend to be cases where subject and ob-

ject information is important. For example, one
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error was on the example “The FAA cleared the

airspace” entails “Airspace was cleared by the

FAA”. This is reminiscent of the passive sen-

tences from our HANS dataset, which are exam-

ples where subjecthood is important. Another ex-

ample exhibiting the same phenomenon is “Laura

has! declared Sophie, glancing at me” entails “So-

phie glanced at me as she declared, Laura has!”.

Upon closer inspection, it appears that about 40%

of the errors on the MNLI dataset involve subject-

hood in some form.

4 Discussion and Conclusion

Our experimental results demonstrate that lan-

guage models do indeed use grammar to derive

their representations of subjecthood and object-

hood. We were able to null out subjecthood infor-

mation in the model by performing INLP, which

resulted in a significant drop in accuracy on the

HANS dataset. We also observed that the model’s

accuracy on the MNLI dataset was not signifi-

cantly affected by performing INLP, as we ex-

pected since the dataset does not always depend

on subjecthood. This is a promising result for fu-

ture research in interpretability, as it shows that

language models can be used to discover grammar

from unstructured data.

In future research, we can apply other tech-

niques like AlterRep (Ravfogel et al., 2021) to

attempt to invert a language model’s representa-

tion of subjecthood and objecthood rather than

destroying it. Another new technique is Linear

Adversarial Concept Erasure (R-LACE) (Ravfo-

gel et al., 2022), designed to be a replacement

for INLP. It may be interesting to see whether we

can attain the same results using different inter-

mediary methods. We could also try using other

variations of the HANS dataset to compare perfor-

mance against more control groups.

While this paper strengthens the answer to the

question of if language models use grammar, fu-

ture interpretability research should explore how

language models derive their representations of

grammar to begin with. It is intriguing that hu-

man language can be discovered from unstruc-

tured data, and there is a lot of research to be done

in understanding how this process works.
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